wein.plus
Attention
You are using an old browser that may not function as expected. For a better, safer browsing experience, please upgrade your browser.

Log in Become a Member

Aeolian

See under soil type.

Next to climate and grape variety, one of the most important factors influencing wine quality. The different soil types have developed over millions of years through physical and chemical weathering of rocks as well as through humification of organic matter. In physical weathering, natural forces such as wind, water, heat, cold and frost initially cause the mechanical disintegration of the rock formations into clods and gravel. Strong temperature opposites, frictional and shear forces as well as frost blasting by frozen water play an important role in this process. Chemical weathering processes such as oxidation, dissolution processes and acid attacks attack the mineral lattice structure of the rocks. In the process, easily water-soluble minerals such as carbonates (inorganic salts and organic esters of carbonic acid) and sulphates are dissolved first, and the rock slowly decomposes into grit, sand, silt or clay. Every rock, even the hardest granite or quartz will eventually decompose to dust, even if it takes many millions of years.

Bodentyp - Graphik Kriterien für Weinqualität

Organic substances from plant residues, animal residues from worms, insects and small animals of all kinds as well as dead microorganisms such as algae, bacteria and fungi are converted into humus. In the process, the nitrogen compounds essential for plant growth (nitrate, ammonium) as well as other nutrients are released. Fungi and bacteria play the main role in the decomposition of organic residues such as wood, leaves, roots or animal corpses. Insects such as soil mites are important because of their crushing feeding activities. Earthworms play a decisive role in soil loosening, mixing and the formation of stable clay-humus complexes, which are formed in the earthworm gut and excreted as faeces. These contribute to the structural stability of the soil and can bind easily water-soluble nutrients, making them available to plants for longer.

The soil horizons

Every soil consists of soil horizons (soil layers) with special properties. They are almost always horizontal and can be recognised in the soil profile (vertical section of the soil in an excavation). The sequence is the essential criterion for determining the soil type. From top to bottom, a soil is divided into an O horizon (organic soil horizon) or also H-L-O horizon (peat from plant remains, litter) and a three-part mineral horizon with A horizon, B horizon and C horizon. Horizons are mixed by deep mechanical tillage. Depending on climate and erosion impact, the A or B horizon may be absent or only marginally developed. The individual horizons are designated with symbols. The main symbols are indicated with a capital letter, the additional symbols (features due to soil formation or pedogenic features) are indicated with lower case letters after the main symbol:

  • O = organic support horizon (except peat), O of organic
  • A = mineral topsoil with revitalised, humus-rich layer
  • B = mineral subsoil with humus-poor layer with fine soil already chemically weathered to sand, silt or clay
  • C = little altered source rock with physical weathering
  • G = semi-terrestrial horizon with groundwater influence, G of groundwater
  • S = terrestrial subsoil with backwater influence, S of backwater
  • M = horizon of deposited soil material, M from "migrare" (to migrate)
  • P = mineral subsoil horizon of clay or clay marl rock
  • R = Mixed horizon through soil mixing measures = infiltration trenches, R of infiltration trenches
  • E = Mineral soil horizon from applied plaggen
  • h = humus
  • p = ploughed, p from plough
  • l = lessivated (clay-depleted, finest clay mineral particles are displaced into deeper soil horizons = t)
  • e = eluvial (washed out from lavare = wash, acid bleached)
  • t = clay enriched
  • v = weathered

As an example, an Ae horizon: a lightened, often grey-bleached zone under the humic topsoil. It is formed by strong soil acidification and the associated displacement of complex iron-humus compounds. Below this is a wash-in zone, an illuvial horizon enriched with the washed-out substances of the Ae horizon. Depending on the predominant humus or iron compounds, a distinction is made between Bh- (h = humus) and Bs-horizon (s = backwater). The largest part of the vine root system is located at a depth of 20 to 50 centimetres (horizon A and B), but this is highly dependent on the soil type. In very old vines, roots can reach up to 15 metres deep and more.

Bodentyp - Bodenhorizonte und Rebstock-Wurzelbereich

In a vineyard, the horizons have usually already been mixed through soil cultivation (Rigolen = loosening of the soil). Rock subsoil, initial soil, tillage, fertilisation as well as water balance with a balanced relationship between the water storage capacity and the water drainage characterise the vineyard location in addition to the local climate (microclimate or site climate) and give each vineyard site the typical and unmistakable character of its origin. The duration of the vegetation cycle, the orientation of the exposure (sunlight) and the local site climate on the slope, the existing soil conditions, the humus and lime content and the water supply influence the choice of the most suitable grape varieties.

The term terroir

The frequently used catchphrase "wine quality primarily originates in the vineyard/vineyard (and can only be improved to a small extent in the cellar)" can be read on many winegrowers' websites and is 100% valid. The well-known geologist and wine book author James E. Wilson aptly writes in his book "Terroir - Key to Wine": "The soil is the soul of the vine". However, the direct relationship between rock, grape variety and wine character is probably only marginally pronounced today due to the uniform use of often shallow-rooted rootstocks with heavy mineral fertilisation and the use of new viticultural cellar methods. In the vineyards that used to be fertilised only sparingly and mostly organically, with their old vines planted ungrafted and often rooted deep into the rock, this relationship was certainly much more pronounced.

The French in particular recognised the importance of the interplay of climate-rock-soil-site-small climate and grape variety very early on and elevated this to their philosophy, so to speak, in the creation of the term terroir. The terroir with the grape varieties best suited to it is defined by wine law in the classification of wine-growing regions as Appellation d'Origine Protégée (AOC/AOP). This is a clear difference to the philosophy in Germany and Austria, for example, where great (sometimes too much) importance is attached not to the location but mainly to the grape variety and the single-varietal vintage wines produced from it. A rethink has already begun, however.

The composition of the soil

In terms of wine quality, it can be of great advantage if the vines have to drill their roots as deep as possible into the soil due to stony ground. The ability of soils to act as ion exch angers, i.e. to exchange nutrient salts in the soil solution for the protons (H+) and anions (OH-) released by the plant, is what makes it possible to supply the roots with essential nutrients and trace elements in the first place. The minerals absorbed are found in the overall extract of a wine. The vine needs about twenty essential trace elements and the main nutrients to thrive optimally. As a permanent crop, it is less dependent on fertile soils than annual crops. There are sites with very poor soils where high-quality wines grow. However, this does not mean that the fewer nutrients available, the better the wine quality.

Bodentyp - Moselschleife Leiwen / Trittenheim - Blick von der Zummethöhe

A lack of nitrogen and amino acids in the must can hinder the yeasts during fermentation and cause fermentation faults. Among other things, this can manifest itself in the wine defect UTA (atypical ageing tone). Rather, the harmonious composition of the nutrients in the soil, the water and nutrient availability as well as the aggregate state and rootability are important for the suitability of a soil. Plant or soil tests using the EUF method can detect nutrient deficiencies and, if necessary, correct them by fertilisation. A comprehensive classification or determination of the soil quality for agricultural use or specifically for viticulture is carried out by means of bonitur.

In calcareous soils with pH values above 8, the high calcium content in the soil makes it difficult for other doubly positively charged ions such as nitrogen compounds, magnesium or the trace elements boron, iron, manganese or zinc to be absorbed, so that lime chlorosis or other physiological deficiency symptoms can occur, even with normally sufficient nutrient levels in the soil. Especially at the beginning of the growth cycle, the nitrogen content (in the form of nitrate and ammonium) in the soil should be sufficient. As a basic rule, basic (alkaline) soils with high pH values above 8 (for example, limestone, chalk and marl soils with mostly high levels of calcium and magnesium) produce wines with higher acidity, while acidic soils with low pH values below 6 to 4 (for example, granite, quartz sand) produce wines with lower acidity levels. Trials with increased potassium applications have shown that vines respond with increased malic acid production. To compensate for the increased influx of positive potassium ions, the plant produces negatively charged acid anions (malic acid). However, other causes (independent of vintage or ripeness-related acidity levels) naturally also contribute to the acidity in wine.

A good vineyard soil should be rather lean, medium to deep, well aerated, water-permeable and not compacted, rich but not too rich, not too humus-rich but rich in mineral components. The best sites are so-called slope sites, because this creates an almost vertical angle of incidence for the sun's rays in late summer, and thus the maximum amount of irradiation can be utilised. The best location on a slope is the wind-calm concave centre (belly, navel, kidney), where the highest temperature sums are reached and the soil is usually well-drained. Soil colour also plays an important role, because dark soils absorb the sun's heat more quickly and extensively, while light soils reflect light, so such soils do not heat up as quickly or as much. The suitability of an area for viticulture is called viticultural suitability, which can be determined on the basis of a catalogue of criteria.

The soil types - Alberese to volcanic rock

In soil science, soil type is the term used to describe different manifestations of soils which, as a result of the processes of pedogenesis (soil formation), have produced matching characteristics in the form of soil horizons and thus have a similar stage of development. While the soil type describes the appearance of a soil as a result of soil formation, soil types (also soil texture or grain size) are differentiated according to the grain size composition of the mineral soil substance. The main soil types are sand, silt, clay and loam

Bodentyp -  Sand, Geröll, Gras, Erde

Alberese
Italian name for weathered sandstone with a high proportion of calcium carbonate (limestone) in Tuscany, which is predominant in the central and more southern part of the Chianti region. See below under limestone.

Alluvium/Alluvion (alluvial soil)
Alluvial sediment (loose materials) washed up and deposited by water. Alluvium is also another name for the Holocene, the youngest geological era lasting from the end of the last ice age about 10,000 years ago until today. Alluvial soils are mostly fine-grained, very fertile soil types that develop in the floodplains and estuaries of rivers. They consist of soil particles that have been washed up and sedimented when the water calms down.

Bodentyp - Alluvium (Kalifornien und Amazonas in Brasilien)

Depending on the sinking velocity of the soil particles carried in the water and the flow velocity of the floodwater, they consist of clayey mud, silt, sand or, in riparian areas with high run-off velocities and strong erosion dynamics, gravel and boulders. Despite being predominantly stony and sandy, as in the French Médoc, for example, these soils are very well suited for viticulture. The secret of the sites there are the clay lenses inside the alluvial gravel terraces, deposited during various floods and covered with sand and gravel, which can store water. Such clay layers are literally sought out by the vine roots.

Amphibolite
Mostly black over grey to dark green rock formed by the metamorphic transformation of basalt (see below) under high pressure and temperature conditions. It consists of up to 50% representatives of the amphibole group, such as hornblende (see below) or chermakite, and up to 40% of other minerals such as garnet and quartz, as well as ores such as magnetite and pyrite.

Aeolian
Wind-induced phenomena named after the Greek wind god Aeolus. Aeolian transport causes fine material such as loess, silt or clay to be released from the parent material such as unconsolidated rock and transported over greater distances by the wind. Aeolian weathering is the removal of rock by wind-moved grains of sand, fine gravel, etc. with the effect of a sandblast. This creates an aeolian weathering soil.

arcose
The geological term describes a pink to reddish, coarse-grained sandstone with a high proportion of feldspar, which occurs mainly in dry, water-scarce areas. It leads over to the coarser-grained granite rocks.

Floodplain soils
Soils formed from river deposits that are periodically flooded. Such soils occur, for example, in the Danube, Moselle and Rhine floodplains. When they are no longer flooded, they develop into brown soils and parabrown soils. These soils are mostly nutrient-rich, biologically active and fertile.

Basalt
Basic effusive rock (cooled magma) consisting of feldspar, hornblende, olivine and magnetite, which was formed during the melting of the Earth's mantle. It contains a lot of lime and soda and is rich in minerals. The hard, slowly weathering rock forms good soils and produces wines with appealing acidity. It is particularly suitable for white wines from the varieties Chardonnay, Grüner Veltliner, Pinot Blanc, Sauvignon Bl anc and Welschriesling. Such soils are found, for example, on the Moselle and the Middle Rhine (Germany) and in Styria (Austria).

Pumice (pumice stone, pumice stuff)
The porous, glassy volcanic rock is formed by gas-rich volcanic eruptions in which the lava is foamed by water vapour and carbon dioxide. It is chemically no different from other lava, but is much lighter due to the trapped air. The colour varies from black and with increasing air content to grey and white. The name Bimstuff refers to the grain size, at least 75% must consist of volcanic ash. Soils made of pumice have a good water retention capacity and are very suitable for viticulture. It is found throughout the Greek island of Santorini, which was formed from a volcanic explosion. Similar to pumice is obsidian, but it contains much less carbon dioxide. See also under Canava and below under Volcanic rocks.

Blue slate
See below under slate.

Boulbènes
A term commonly used in Bordeaux for a very fine, pebbly soil. It occurs, for example, on the plateau of the French Entre-deux-Mers area.

Brown earth
These A-B-C soils develop mainly over low-calcareous but base-rich rocks such as granite, gneiss, greywacke, clay slate and clayey sandstone. Formation occurred under humid climatic conditions from humus-rich topsoil on low-calcareous silicate rock (ranker) with deciduous and mixed forest cover. The brown colouration in the B horizon is caused by iron oxides formed during the chemical weathering of iron-containing silicates. In this process, the acids released by the tree roots strongly contributed to the deep weathering of the B horizon. The lime content, stone content and water balance of brown earths can differ greatly. Depending on its nature, this can be an excellent soil for viticulture.

Bodentyp - Braunerde

Parabrown earth differs from brown earth in that clay particles have been shifted from upper to deeper layers. This is a process that occurs during soil acidification. Calcium dissolution causes putty-like lime structures to disappear, so that the released clay particles are washed away with the seepage water into deeper soil layers. Parabrown soils mostly developed from pararendzines. Parabrown and brown soils are the most common soils in humid Europe. Loam and loess parabrown soils are among the most fertile soils.

Breccia (Breccie)
Conglomerate with angular components (see below).

Buntsandstein
Variegated, mostly red sandstone with partly clayey alluvium. The red sandstone was formed from the erosion debris of mountains of the Palaeozoic era. It was deposited in a dry semi-desert climate in a large basin (Germanic Basin) in the centre of present-day Europe and later overlaid by sedimentary rocks such as Jurassic limestone or by fly loess. Such soils are found, for example, in the growing region of the Palatinate (Germany).

Crasse de fer
Name for a sandy-gravelly soil with intermediate layers of clay and a sub-layer of ferrous ironstone in the Pomerol area; see also under Terra Rossa.

Iron
See under Terra Rossa and below under Rotliegendes.

Feldspar
Complex silicate compounds of white and reddish minerals, about 60% of which are involved in...

The world's largest Lexicon of wine terms.

25,426 Keywords · 47,150 Synonyms · 5,306 Translations · 30,739 Pronunciations · 170,601 Cross-references
made with by our author Norbert Tischelmayer. About the Lexicon

EVENTS NEAR YOU